Feature-Oriented Evolution of Automation Software
Systems 1n Industrial Software Ecosystems

Daniel Hinterreiter
CD Lab MEVSS, ISSE
Johannes Kepler University
Linz, Austria
Email: daniel.hinterreiter @jku.at

Herbert Prihofer
Institute System Software
Johannes Kepler University
Linz, Austria
Email: herbert.prachofer @jku.at

Abstract—In the domain of industrial automation many com-
panies nowadays need to serve a mass market while at the same
time customers demand individual customer-specific solutions.
Such customizations often apply to individual products only but
may also be needed at the level of product lines for whole market
segments. To handle this problem, development is frequently
organized in software ecosystems (SECOs), i.e., interrelated
software product lines involving internal and external developers.
This paper introduces an approach supporting feature-oriented,
distributed development and evolution in industrial SECOs. It
is common industrial practice to first derive initial products
from a product line, then adding and adapting features to
satisfy individual customer requirements, possibly followed by
merging back these changes into the original product line. Our
approach goes beyond this practice and also allows to share
new or updated features by transferring them to other product
lines in the ecosystem. This is for instance useful when a feature
developed in an individual customer project becomes relevant for
another market segment or when updates of features need to be
transferred to related products in the ecosystem. We describe and
motivate research challenges based on the industrial ecosystem of
an industry partner. We outline the key elements and operations
of our approach, including an implementation in our FORCE?
development environment. We demonstrate application scenarios
from the well-known Pick-and-Place Unit (PPU) system as a proof
of concept.

I. INTRODUCTION

The automation industry is facing an increasing market
demand for machine-specific solutions [1], [2]. Therefore,
industrial software solutions are nowadays often developed
and evolved in software ecosystems (SECOs), i.e., interrelated
software product lines [3] involving internal and external
developers. An example of such a SECO is KePlast, a SECO
in the domain of industrial automation maintained by our
industry partner Keba AG. Our analysis of the evolution
in this SECO [4] showed that development is based on a
multi-stage [5] and clone-and-own [6]-[11] process involving
multiple product lines: the core product line provides a com-
prehensive set of features to create a wide range of solutions

Lukas Linsbauer
CD Lab MEVSS, ISSE
Johannes Kepler University
Linz, Austria
Email: lukas.linsbauer @jku.at

Paul Griinbacher
CD Lab MEVSS, ISSE
Johannes Kepler University
Linz, Austria
Email: paul.gruenbacher@jku.at

Florian Reisinger
CD Lab MEVSS, ISSE
Johannes Kepler University
Linz, Austria
Email: florian.reisinger @jku.at

Alexander Egyed
Software Systems Engineering (ISSE)
Johannes Kepler University
Linz, Austria
Email: alexander.egyed @jku.at

for automating injection molding machines. It is controlled
by an in-house development team. Individual products for
customers are derived and adapted by adding new features
or creating new versions of existing features to meet the
customer-specific requirements. Furthermore, in the KePlast
SECO the core product line is also the basis for deriving yet
other product lines, which are then used by Keba and OEMs
to develop products for specific market segments. That means,
the development in the SECO is performed in a globally
distributed fashion, only weakly integrated with the in-house
team.

The KePlast example shows that managing the evolution
in SECOs is challenging as developers continuously and
independently evolve features of the core product line, the
cloned product lines, and individual customer products. In
particular, it remains hard to track and understand evolution at
the level of features. Development teams typically use version
control systems to track fine-grained, implementation-level
changes to product lines and products. However, it is difficult
to relate such low-level changes to features and their evolution
in the SECO. Overall, this bears the risk that knowledge about
commonalities and variability of existing product lines as well
as products created by different business units or organizations
is lost, thus increasing the risk of re-inventing the wheel in
distributed development. This is confirmed by Duc et al.’s [12]
investigation of multi-platform development practices, which
showed that diverged code bases frequently lead to redundant
development.

The aim of our ongoing research is thus to support the
development and evolution in SECOs at the level of fea-
tures. Lifting the focus to features is essential, as they are
widely used by product management, software architects, and
developers in SECOs to communicate about systems and
changes to systems [13]-[15]. Features also provide a useful
abstraction and common view of variability in a wide range
of development artifacts [16], [17].

In our earlier research we introduced a multi-purpose, multi-
level feature modeling environment [18], augmented with
feature-to-code mappings [14] and configuration-aware pro-
gram analysis [10]. We have now been evolving this environ-
ment to support distributed and feature-oriented development
and evolution in SECOs. Our approach and its FORCE?
tool implementation go beyond the scope of single integrated
product lines as often assumed in conventional product line
engineering approaches and aims to support engineering in a
network of interrelated product lines.

The main contribution of this paper is a description of our
approach with key elements and operations for supporting
feature-oriented, distributed development in SECOs and its
implementation in the FORCE? development environment.
We also provide a preliminary evaluation of our concepts and
tool based on application scenarios from the Pick-and-Place
Unit (PPU) system [19].

II. INDUSTRIAL CHALLENGES

Our analysis of software evolution challenges in the indus-
trial SECO of Keba AG [4] revealed four main research chal-
lenges for feature-oriented evolution of interrelated product
lines:

Cl) How can we create a product line for a specific
development task from another product line? It has been shown
that the development of products for specific customers or
market segments require specialized product lines, which are
created from an original product line by selecting, extending
and adapting the required features. For example, in the KePlast
SECO, a specific product line has been created for the Chinese
market from the original product line. Such cloned product
lines, however, then evolve independently and keeping them
up-to-date becomes extremely difficult, e.g., when new of
modified features of the original product line become avail-
able.

C2) How can we transfer features from one product line to
another product line? It has been shown that ‘transplanting’
code and related artifacts from one system to another in
a largely automated fashion is extremely challenging [20].
Even if features have been developed in one product line
with the intention to reuse them in another product line,
transferring them remains hard. As a result engineers often
develop identical or similar features in different product lines,
thus re-inventing the wheel as shown by Gousios et al. [21].
This increases the risk of losing the knowledge of feature
implementations in the different product lines [22].

C3) How can we merge features back into the original
product line? If a new feature or a new version of an existing
feature developed for one specific purpose becomes relevant
for other customers or market segments, it should be merged
back into the original product line. This is difficult, as the
customer-specific adaptations often prevent the straightforward
reuse of the feature. Some approaches have been proposed to
reduce this gap between clone-and-own and product lines. For
instance, the VariantSync approach [23] aims at automating
the synchronization of software variants to simplify their later

integration in the product line. However, in [24] the authors
show that new features (pull requests) are also often rejected
due to problems with code quality, or if they become outdated
due to even newer features. Overall, evolving a product line
remains challenging, particularly, if the features in the product
line are tightly tangled, dependent, or interacting with each
other.

C4) How can we pull updated features from the original
product line into cloned product lines or derived products?
A fourth challenge is to update derived products and cloned
product lines, which typically evolved independently from
the original product line, by pulling updated features from
the original product lines. Such updates usually result in
inconsistencies and conflicts which cannot be resolved easily
as pointed out by Schulze et al. [25].

III. APPROACH

To address these challenges we have been developing a
platform supporting a feature-based clone-and-own approach
for managing multiple distributed product lines in SECOs.
The proposed approach follows the idea of a ‘virtual platform
strategy’ [11] and provides support for managing multiple
product lines and products in a SECO as shown in Fig. 1.

Specifically, a SECO comprises multiple interdependent
platforms, each embodying a product line with variability.
Each platform provides an independent working environment
for feature-oriented development and includes feature models,
feature-to-code mappings, a feature-oriented version control
system, and one or more derived products. A new platform
can be created based on an existing one by selecting a
coherent subset of features and cloning the platform based
on the selection, i.e., the clone will only contain that subset
of features and code. Features can be transferred to other
platforms, they can be pushed to their original platform, or
they can be updated from their original platform.

A. Platform Elements

A platform for product line development comprises four
main building blocks (cf. Fig. 2): a feature model defining
the common and variable features of a product line; a

(=28 Checkout and
Iil Commit features

Clone
features
Pk
features =)
f &nifeatures
eatures
:@E Checkout and
Iil Commit features

Fig. 1: Multiple platforms form an ecosystem. Various opera-
tions support feature-oriented evolution in the SECO.

Clone
features

Pull
features

=5

atures

Transter f€

feature-oriented code and artifact repository for managing
the implementation artifacts of the product line, with feature-
to-code mappings linking features to source code and other
artifacts; as well as derived products, i.e., compositions of code
and artifacts for specific feature configurations.

Feature models. We use a feature modeling approach with
support for grouping features in components and arranging
them in different modeling spaces as described in [14]. We
further support multiple versions of features in feature models
to support tracking evolution at the level of features.

Feature-oriented code artifact repository and feature-to-
code mappings. In distinction to common source code reposi-
tories and version control solutions such as Git or Subversion,
our approach is based on the variability-aware version control
system ECCO [26]-[30], which was originally designed to
recover feature-to-code mappings from independently main-
tained products [8]. ECCO stores and versions features and
maintains mappings of features to artifacts in the repository.
Mappings are maintained in the form of presence conditions
determining whether the artifacts ought to be included if a
specific feature is selected in a product configuration. A pres-
ence condition is a propositional logic formula with feature
versions as literals. It supports the evolution of features over
time by considering feature versions in the computed presence
conditions [31].

Products. A product then is a concrete composition of
artifacts from the repository. In fact, a product is created
based on a valid selection of features from the feature model
by composing the artifacts mapped to the selected features.
Specifically, the feature-to-code mappings stored in the ECCO
repository allow composing products from a selection of
features in alignment with the feature model. The derived
product is then the basis for extending and adapting the
product solution and its corresponding feature model.

B. Internal Operations

For supporting SECO development and evolution, we dis-
tinguish infernal operations only affecting one platform, and
external operations involving different platforms in the SECO.
The internal (intra-platform) operations Checkout Features and
Commit Features allow to develop and evolve features within
one platform (cf. Fig. 1 and 2).

Checkout Features. This operation allows deriving and com-
posing a product from within a platform. Thus, a checkout
requires a valid feature configuration without unresolved vari-
ability. Then, the feature-to-code mappings stored in the repos-
itories are used to compose the required code artifacts based on
the provided configuration. That means, the composition uses
the feature-to-code mappings to construct the source files, and
possibly other artifacts, based on the configuration.

Commit Features. A developer uses this operation to submit
the changes made in the product development to the repository.
The developers are supposed to provide their ’intention’, i.e.,
information about the feature or set of features that have been
changed [30]. Based on this information, the feature-to-code
mappings will be created and updated. Similar to distributed

Feature-oriented development platform

Feature model

Code repository

M
Checkout (F1, F11,...)
Commit (F11,..)
u

Product

1 m]

Fig. 2: A platform model consists of a feature model, feature-
to-code mappings, a code repository, and derived products.

code repositories like Git, Commit Features is just a local
operation and does not create any conflicts. If the committed
code artifacts affects already existing features, new feature
versions are created automatically.

C. External Operations

External (inter-platform) operations are for exchanging fea-
tures between platforms and the operations Clone Features,
Push Feature, Pull Feature and Transfer Feature (cf. Fig. 1)
are supported.

Clone Features. The operation Clone Features allows cre-
ating a new platform from an existing for a subset of its
features (cf. challenge CI). After selecting a set of features
available in the original platform, the operation clones the
feature-to-code mappings and code artifacts of the selected
feature subset to a new repository. An important difference
to clone operations in common version control systems is
that the customized platforms contain only the subset of the
features required for a specific development task. During this
operation the feature model in the original platform is pruned
to just contain the features provided in the configuration. After
the clone is completed, the developer will start adapting and
extending the source code and feature model by checking out
and committing features as shown above.

Push Features. The Push Features operation allows pushing
one or more features developed in a cloned platform back
to the original platform. At the surface this operation looks
similar to a push command in Git, however, pushing again
works at the level of features. The operation adds code artifacts
to the repository of the original platform and also merges
feature models, possibly resulting in new feature versions (cf.
challenge C3). Merge conflicts may occur in this distributed

S runtime-FORCE - Opens » FestareMiodel Configuration Edvor s Elipee Pt TS O B |

File Edit MNavigate Search Project Run
| B @ inid @ i~ 0-R-iBS &0~
= 0

= ||| 5 ConstraintDemo R ECHt E2

IMPORT_OVER_LISTFILE
PPU_AirPressureState

Window Help

=

g
[# Package Explorer &2

» ¢ ConstraintDemo
4 |5 MappingDemo
4 [= configurations
£ Config.config
4 [src

END_IMPORT

FUNCTION_BLOCK Stackpush #DUMMY_EDIT_BLOCK
a [MappingRemo._Feal
|4 Beta.bdt [MappingDemo_ Featu
= [

SYSTEM_ VAR
do_stackCylinderPushEnabled : BOOL;
di_stackPushWithdrawn : BOOL;
di_hozlActive : BOOL;
di_machineStarted : BOOL;
di_stackPushExtracted : BOOL;
s e PRU di_outputFull : BOOL;
di_craneHasSomethingInHand :
BOOL;
BOOL;

BOOL;
di_sensor9Active :
do_stackPushPanic :

END_VAR
VAR
state_stackpush :

sensordiasActive :

END_VAR
#BEGIN_EDIT_BLOCK

PPU_AirPressureState;
BOOL;

IF NOT di_machineStarted THEN
state_stackpush := DISABLED;
1| [

[Problems 52 | @ Javadoc| [E, Declaration| = Progress

q i » | |Qitems

Quick Access @ | I
= 08
2] Config.config@MappingDemo 5

MappingDemo

Concrete Feature

Evolve Feature

Featurel Not Evolve Feature

L] Mandatory
o Opticnal
< or
® or
Reguires
* Excludes

> Uses

| Feature2 | |

Feature3 |

Show CrossConstraints:

Constraint:

= 0

ik
1
4

Fig. 3: Screenshot of the FORCE? development environment.

scenarios: for instance, a feature pushed from some platform
back to its origin may already exist in the origin platform after
a push of a similar feature with the same name from a sibling
platform. Furthermore, beside pushing all changes of a cloned
platform back to its origin platform, the operation supports
pushing only a selected feature or feature set.

Pull Features. A key challenge in industrial SECOs is to
update features of cloned platforms and derived products after
new versions of the origin platform are released. The Pull
Features operation allows a developer of a cloned platform
to update features to new versions provided by the original
platform (cf. challenge C4). Again, a fine-grained selective
approach is supported, which allows to update only the desired
features. Difficulties can be expected in this case if the feature
on the cloned platform has been changed significantly, result-
ing in conflicts with the feature update. Also, changes could
have been made to the feature model and feature dependencies
in the origin or the cloned platform, which would result in
conflicts that need to be resolved.

Transfer Features. Another evolution challenge described
above (cf. challenge C2) is to transfer features from one
derived product to another one, i.e., features implemented in
one platform may be reusable in other platforms, even when
pushing the feature to the original platform may not make
sense. The Transfer Features operation supports developers
who want to exchange some features between platforms.
The operation copies the transferred feature’s implementation
from the source platform repository to the target repository
and adds the feature to the feature model. In our ongoing
research we investigate how to support developers in placing
the transferred feature in the target feature model and how to

adapt the feature-to-artifact traces in the repository based on
the new position in the feature model. Furthermore, we plan
to raise awareness of dependencies and constraints that might
be violated.

IV. TooL IMPLEMENTATION

We have implemented the approach as proposed in Sec-
tion IIT in the FORCE? Eclipse-based development environ-
ment. The main components of FORCE? are (i) ECCO which
serves as the feature-oriented and variability-aware version
control system, (ii) a reader/writer framework for parsing and
persisting the different program artifacts, i.e., source code
in different languages as well as configuration settings, (iii)
a graphical feature modeling framework, and (iv) a project
explorer for managing the various platforms and their artifacts.
Currently the tool supports various artifacts, i.e., PLC code
in a dialect of the IEC 61131-3 languages from our industry
partner, Java, and different configuration settings.

The screenshot in Fig. 3 shows FORCE? with its feature
modeling tool, a tree view showing the artifact tree of a
currently checked out product configuration, and a source
code editor. The editor highlights the code elements which
are mapped to a selected feature of the control component.

V. APPLICATION SCENARIOS

As a proof of concept we illustrate the developement oper-
ations and its implementation in FORCE? on the Pick-and-
Place Unit (PPU), a well-known example of a manufacturing
system for transporting and sorting different workpieces taken
from [19]. In [19] and [2] the PPU system is used as a
case study system illustrating the evolution of automation
systems by describing different evolution steps leading to

Fig. 4: Structure and components of the basic PPU system:
(1) Stack, (2) Ramp, (3) Crane (taken from [19]).

various variations of the system. The basic version of the PPU
comprises three components: a Stack, a Crane, and a Ramp (cf.
Fig. 4). In further evolution steps, further components Stamp
and Sorter are added to the system.

We have been implementing various versions and variants
of the PPU for demonstrating evolution support in FORCE?.
Our PPU systems are built up from several subsystems using
different technologies: a control program written in Structured
Text, an operator visualization panel implemented in Java,
a Java component simulating the physics of the machine,
as well as the configuration of the system with variable
mappings connecting the different subsystems in simple text
files. Thus, our implementation of the PPU system comprises
artifacts of various types, which is common in industrial
automation systems. Moreover, the implementation of the PPU
features usually spans different subsystems and technologies.
This means that checking out a PPU product by selecting
features results in composing a system containing different
technologies. Starting from a base version, we have been
evolving the PPU to include 14 versions, allowing us to
validate the different operations of our approach.

Based on the evolution scenarios described in [19], we
present representative examples to illustrate how our approach
supports feature-oriented and distributed development and evo-
lution. Fig. 5 depicts the evolution timeline of a scenario we
selected for demonstrating the key operations. Each platform
in the scenario is shown using a lifeline and snapshots of
its feature model after model-changing operations. The figure
then shows the different operations used for performing the
evolution steps.

The original platform Base represents the starting point. The
initial version (Base, vI) contains features for controlling the
three basic components and the optional Stamp component.
In a first scenario, the developer starts the evolution by using
the Clone Features operation (operation 1) to create a new
platform Clone A, which is used to extend the control feature
for Crane. The clone is created from a set of features, but
does not include the feature Stamp. After cloning the own

platform, the developer performs a checkout (operation 2)
and generates the concrete product P/ for implementing an
extension. The developer adds the feature InductiveSensor to
the feature model and writes the code for the inductive sensor
feature. By committing the changes (operation 3) the added
code will be added in the repository and mapped to the new
feature InductiveSensor (Clone A, v2).

Using a second clone operation, a new platform Clone
B is created from the base platform (operation 4). In this
new platform, a new optional feature MicroSwitch is added
to the Crane feature by the developer (Clone B, v2). This
again happens on a concrete product P2 in a checkout-code-
commit cycle (operations 5 and 6). However, the developer
also has to add an InductiveSensor feature and would like
to reuse the feature from the sibling platform. The Transfer
Feature operation allows to reuse the feature from the sibling
platform (operation 7). It takes the feature together with the
mapped code artifacts and integrates them into the platform,
i.e., the feature will be added to the feature model, the code
will be added to the repository, and the feature mappings will
represent the resulting dependencies (Clone B, v3).

However, there might be some inconsistencies and conflicts
due to the changes already made in the platform when imple-
menting the feature MicroSwitch. Therefore, the developer has
to resolve the conflicts in the implementation. For that purpose,
the developers checks out a configuration containing both new
features (operation 8) InductiveSensor and MicroSwitch to
obtain concrete product P3 and changes the implementation
so that conflicts are resolved. When committing the changes,
new versions of the features InductiveSensor and MicroSwitch
are added to the platform (operation 9). Support for resolving
such conflicts is essential for developers and will be part of
our future research (c.f. Section VII).

Further, the team decides to make the feature InductiveSen-
sor in the version of platform (Clone B, v3) generally available
via the original platform. The developer adds and merges the
new features back to platform Base using Push (operation 10).
Again, the Push Feature operation will extract all the code
artifacts for feature InductiveSensor, i.e., feature, code and
traces, and integrate them into the base platform. Possibly, the
developer responsible for the base platform will have to resolve
conflicts and/or make some improvements by implementing a
new version of the feature in a checkout-code-commit cycle.
The result is a new version of platform Base, v2.

Finally, the developer of the first cloned platform Clone A
notices that the version of feature InductiveSensor in the
Base platform contains some improvements, which would also
be beneficial. Therefore, the developer updates the solution
of InductiveSensor. The Feature Update operation allows
to selectively update feature InductiveSensor from the base
platform (operation 11) resulting in a new version of platform
(Clone A, v3) with a new version v2 of feature InductiveSensor.

VI. RELATED WORK

We discuss related research in the areas of product line
engineering, clone-and-own reuse, variation control systems,

Base, v1

Base Clone A
PPU

1. Clone (Crane,Stack,Ramp)

—

Clone B

Clone A, v1
P1 €A v PPU

‘ Crane H Stack H Ramp H Stamp ‘

2. Checkout (Crane, Stack, Ramp)

3.Commit (InductiveSensor)

P % Crane Stack Ramp

»"Adds InductiveSensor

4. Clone (Crane,Stack,
Ramp, Stamp)

Clone B, v2
PPU

[5._Checkout (Crane,Stack Ramp)

Crane Stack Ramp
Q

@
Inductive
Sensors

#Adds MicroSwitch
6.Commit (MicroSwitch) |

‘ Crane H Stack H Ramp H Stamp ‘

7. Transfer (InductiveSensor)

.

o
MicroSwitch

Base, v2

Crane
o)
Inductive
Sensors

————

11. Pull (InductiveSensor)

10. Push (InductiveSensor)

O a
Sensors
Clone A, v3 PPU

Crane Stack Ramp
Q

8. Checkout(Crsane,Stack,
Ramp, Stamp,

1 Solve Conflicts between
> MicroSwitch

9.C enso,

i ive!
MicroSwitch

I Inductive
Sensors v2

Fig. 5: Evolution timeline illustrating the extension of the crane with an inductive sensor and a micro switch in the Pick-and-

Place Unit (PPU) example.

distributed code repositories, and evolution in industrial au-
tomation.

Product line engineering: Several techniques proposed
in this area address the evolution of product lines, however,
with a focus on single product lines. For instance, Pleuss et al.
present model-driven support for product line evolution on fea-
ture level. In this approach evolutions are represented as model
fragments and applied to concrete products [32]. Passos et al.
propose evolution patterns for the co-evolution of variability
models and source code artifacts by means of the Linux
kernel [33]. The issue of interrelated product lines has been
investigated in the context of multi product lines, i.e., “sets
of several self-contained but still interdependent product lines
that together represent a large-scale system” [34]. For instance,
several approaches have been proposed to structure variability
models and to check the consistency among them. The model
fragments approach [35] defines guidelines for structuring the
modeling space while the compositional variability manage-
ment (CVM) framework [36] allows defining a product hier-
archy in a multi product line. Consistency checking in multi
product lines can be achieved by checking variability models
across product line boundaries during modeling and during
distributed product derivation. An example is the product
line configuration (PLiC) framework [37], which automatically
ensures consistency during product configuration by invoking
builders on diverse configuration changes.

Clone-and-own reuse: Several approaches provide sup-
port for creating and managing clones in product line engineer-
ing. For instance, Rubin et al. [6] present an operator frame-
work covering atomic operations used to perform common
cloning activities. Rabiser et al. present a modeling approach

based on prototypes, i.e., prefabricated objects from which
clones are created [9]. Similar to the operations presented in
this paper, the approach considers clones at different levels
(products, components, features). However, the approach fo-
cuses on the variability modeling aspects and does not address
aspects of distributed version control. Fischer et al. [8] present
the ECCO (Extraction and Composition for Clone-and-Own)
approach to refactor cloned variants into software product
lines, i.e., comparing different product variants in retrospect
to extract feature-to-code traces, interactions between features,
and dependencies between traces.

Distributed code repositories: Pull-based development
processes play an important role in distributed development
scenarios. However, empirical studies confirm the difficulty
of this approach: for instance, Gousios et al. [21] investigate
reasons for not merging pull requests and show that almost
one third of unmerged pull requests are closed as no longer
relevant, e.g., if a feature is already implemented in another
branch or if the pull request would duplicate already existing
functionality. Similarly, in [24] the authors show that pull
requests are often rejected due to problems with code quality,
but also if they become outdated due to newer pull requests.
Other approaches have thus proposed role-based collaboration
models for SECOs to raise awareness among engineers about
their currently ongoing development activities [38].

Variation control systems: In industrial practice the
branching and forking mechanisms of version control sys-
tems are used to manage features and variabilities. Mon-
talvillo et al. [39] introduced a branching model and operations
for GitHub, trying to provide better support of a version
control systems to be used in SPL development. However,

in a recent survey Linsbauer et al. [30] show that a number
of variation control systems provide specific capabilities to
support the handling of variants of products and product fea-
tures. Specifically, a key component of our FORCE? platform
is the version control system ECCO [26]-[29], which also
provides variation control support at the level of features.
Is similar approach is the SuperMod system [40] providing
feature-oriented support in the area of model-driven software
product line engineering. SuperMod also supports a collabo-
rative development environment and support for merging and
solving conflicts [41]. However, SuperMod is currently limited
to EMF models and may be difficult to apply in industrial
SECOs with their diverse artifact base.

Evolution in industrial automation: Vogel-
Heuser et al. [2] comprehensively discuss software evolution
challenges in automated production systems. They outline
the state-of-the-art, challenges and future research directions
along the stages of the development process for automated
production systems. Moreover, they describe variability
management as a key technique in automated production
system engineering, as automated production system are
usually highly diverse. As key challenges they see variability
modeling being cross-cutting and evolution of variability
models. We argue, that our approach addresses those
challenges: the repository allows maintaining artifacts
crossing different disciplines. Moreover, feature models
support feature versions and the repository is built as a
feature-aware version control system.

Another interesting approach related to our work is pre-
sented in [42]. The paper proposes an approach for exploiting
the evolution experience as well as performance observations
in a fleet of similar machines for supporting evolution. Given
a specific evolution task, experience from similar evolution
scenarios already observed within the machine fleet represents
the basis to carry the evolution step. Similar to our approach,
the goal is to transfer evolution knowledge and their imple-
mentation steps between machine solutions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we outlined our research activities towards a
tool-supported approach for distributed and feature-oriented
development and evolution in SECOs. We expect that the
capabilities and operations for distributed feature-oriented
development will be essential in future SECO development
scenarios. We illustrated our approach and our FORCE?
implementation using application scenarios from the PPU
example.

As already indicated, supporting developers in resolving
conflicts which can occur when pushing, pulling, or trans-
ferring features will be a major research direction. In fact,
in previous work [10], [43], [44] we have developed a
configuration-aware dependency and change impact analysis
technique. The approach builds on a system dependence graph
which encodes all the control and data dependencies in a
program and also is capable of considering the configuration
of systems. Currently, we are working on a technique for

lifting the dependencies found at source code level to the level
of features, which will allow developers to see if and how
features are interacting. We expect that such information on
feature interactions together with a comparison of the changed
features, will provide important insights to analyse and resolve
possible conflicts.

To evaluate our approach and its FORCE? implementation
we plan to follow a similar process as for the PPU system. The
goal is to replay evolution scenarios from real-world systems,
e.g., from our industry partner KEBA, or based on mining
forks and pull-requests from open source repositories.

ACKNOWLEDGMENT

This work has been conducted in cooperation with KEBA
AG, Austria, and was supported by the Christian Doppler
Forschungsgesellschaft, Austria, and the Austrian Science
Fund (FWF) project P25289-N15.

REFERENCES

[1]1 B. Vogel-Heuser, J. Fuchs, S. Feldmann, and C. Legat, “Interdisciplinary
Product Line Approach to Increase Reuse (Interdisziplindrer Produktlin-
ienansatz zur Steigerung der Wiederverwendung),” Automatisierungs-
technik, vol. 63, no. 2, pp. 99-110, 2015.

[2] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” Journal of Systems and Software, vol. 110, pp. 54-84, 2015.

[3] J. Bosch, “From software product lines to software ecosystems,” in
Proceedings 13th International Software Product Line Conference.
Carnegie Mellon University, 2009, pp. 111-119.

[4] D. Lettner, F. Angerer, P. Griinbacher, and H. Prdhofer, “Software
evolution in an industrial automation ecosystem: An exploratory study,”
in Proceedings International Euromicro Conference on Software Engi-
neering and Advanced Applications, 2014.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration using
feature models,” in Software Product Lines. Springer, 2004, pp. 266—
283.

[6] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants:
a framework and experience,” in Proceedings of the 17th International
Software Product Line Conference, 2013, pp. 101-110.

[7]1 D. Lettner, F. Angerer, H. Prihofer, and P. Griinbacher, “A case study on
software ecosystem characteristics in industrial automation software,” in
Proceedings International Conference on Software and Systems Process,
2014, pp. 40-49.

[8] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” in Proceedings 30th International Conference on Software
Maintenance and Evolution, 2014, pp. 391-400.

[9]1 D. Rabiser, P. Griinbacher, H. Prihofer, and F. Angerer, “A prototype-
based approach for managing clones in clone-and-own product lines,”
in Proceedings 20th International Software Product Line Conference,
Beijing, China, 2016, pp. 35-44.

[10] F. Angerer, A. Grimmer, H. Priahofer, and P. Griinbacher, “Configuration-
aware change impact analysis,” in Proceedings 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ser. ASE’15,
2015, pp. 385-395.

[11] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lim-
mel, S. Stanciulescu, A. Wasowski, and I. Schaefer, “Flexible product
line engineering with a virtual platform,” in Proceedings 36th Interna-
tional Conference on Software Engineering, ICSE’ 14, Hyderabad, India,
2014, pp. 532-535.

[12] A. N. Duc, A. Mockus, R. L. Hackbarth, and J. D. Palframan, “Forking
and coordination in multi-platform development: a case study,” in Pro-
ceedings ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM’ 14, Torino, Italy, 2014, pp. 59:1—
59:10.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

T. Berger, D. Lettner, J. Rubin, P. Griinbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature? a qualitative study
of features in industrial software product lines,” in Proceedings 19th
International Software Product Line Conference (SPLC’15). ACM,
2015, pp. 16-25.

D. Rabiser, H. Prihofer, P. Griinbacher, M. Petruzelka, K. Eder,
F. Angerer, M. Kromoser, and A. Grimmer, “Multi-purpose, multi-level
feature modeling of large-scale industrial software systems,” Software
and Systems Modeling, vol. 17, p. 913-938, 2018.

M. Zou and B. Vogel-Heuser, “Feature-based systematic approach de-
velopment for inconsistency resolution in automated production system
design,” in 13th Conference on Automation Science and Engineering
(CASE 2017), Xi’an, China, 2017.

M.-O. Reiser and M. Weber, “Multi-level feature trees,” Requirements
Engineering, vol. 12, no. 2, pp. 57-75, 2007.

T. Simon, J. Fischer, and B. Vogel-Heuser, “Variability management for
automated production systems using product lines and feature models,”
in Proceedings of the 14th IEEE International Conference on Industrial
Informatics (INDIN), Poitiers, France, 2016.

H. Prihofer, D. Rabiser, F. Angerer, P. Griinbacher, and P. Feichtinger,
“Feature-oriented development in industrial automation software ecosys-
tems: Development scenarios and tool support,” in Proceedings 14th
IEEE International Conference on Industrial Informatics (INDIN 2016),
Poitiers, France, 2016, pp. 1218-1223.

B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann, “Researching
evolution in industrial plant automation: Scenarios and documentation of
the pick and place unit,” Technische Universitdt Miinchen, Tech. Rep.,
2014.

E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in Proceedings International Symposium on
Software Testing and Analysis (ISSTA). ACM, 2015, pp. 257-269.

G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study
of the pull-based software development model,” in 36th International
Conference on Software Engineering (ICSE), 2014, pp. 345-355.

D. Lettner and P. Griinbacher, “Using feature feeds to improve devel-
oper awareness in software ecosystem evolution,” in Proceedings 9th
International Workshop on Variability Modelling of Software-intensive
Systems, 2015, pp. 11-18.

T. Pfofe, T. Thiim, S. Schulze, W. Fenske, and 1. Schaefer, “Syn-
chronizing software variants with variantsync,” in Proceedings 20th
International Systems and Software Product Line Conference, 2016, pp.
329-332.

G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s
perspective,” in Proceedings 37th International Conference on Software
Engineering, 2015, pp. 358-368.

S. Schulze, M. Schulze, U. Ryssel, and C. Seidl, “Aligning coevolving
artifacts between software product lines and products,” in Proceedings
10th International Workshop on Variability Modelling of Software-
intensive Systems, 2016, pp. 9-16.

L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Recovering trace-
ability between features and code in product variants,” in Proceedings
17th International Software Product Line Conference, Tokyo, Japan,
2013, pp. 131-140.

L. Linsbauer, F. Angerer, P. Griinbacher, D. Lettner, H. Prihofer,
R. Lopez-Herrejon, and A. Egyed, “Recovering feature-to-code map-
pings in mixed-variability software systems,” in Proceedings 30th Inter-
national Conference on Software Maintenance and Evolution, 2014, pp.
426-430.

L. Linsbauer, A. Egyed, and R. E. Lopez-Herrejon, “A variability-
aware configuration management and revision control platform,” in
Proceedings 38th International Conference on Software Engineering,
2016, pp. 803-806.

[29]

[30]

[31]

(32]

(33]

(34]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Variability extrac-
tion and modeling for product variants,” Software & Systems Modeling,
pp. 1-21, 2016.

L. Linsbauer, T. Berger, and P. Griinbacher, “A classification of variation
control systems,” in Proceedings of the 16th International Conference
on Generative Programming: Concepts & Experience (GPCE’17). New
York, NY, USA: ACM, 2017, pp. 49-62.

L. Linsbauer, S. Fischer, R. E. Lopez-Herrejon, and A. Egyed, “Using
traceability for incremental construction and evolution of software
product portfolios,” in Proceedings 8th International Symposium on

Software and Systems Traceability, 2015, pp. 57-60.
A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski,

“Model-driven support for product line evolution on feature level,” JSS,
vol. 85, no. 10, pp. 2261-2274, 2012.

L. Passos, L. Teixeira, N. Dintzner, S. Apel, A. Wasowski, K. Czarnecki,
P. Borba, and J. Guo, “Coevolution of variability models and related
software artifacts,” Empirical Software Engineering, 2015.

G. Holl, P. Griinbacher, and R. Rabiser, “A systematic review and an ex-
pert survey on capabilities supporting multi product lines,” Information
& Software Technology, vol. 54, no. 8, pp. 828-852, 2012.

D. Dhungana, P. Griinbacher, R. Rabiser, and T. Neumayer, “Structuring
the modeling space and supporting evolution in software product line
engineering,” Journal of Systems and Software, vol. 83, no. 7, pp. 1108-
1122, 2010.

A. Abele, Y. Papadopoulos, D. Servat, M. Torngren, and M. Weber,
“The CVM framework — A prototype tool for compositional variability
management,” in Proceedings 4th International Workshop on Variability
Modelling of Software-Intensive Systems, Linz, Austria, 2010, pp. 101—
105.

C. Elsner, P. Ulbrich, D. Lohmann, and W. Schrdder-Preikschat, “Con-
sistent product line configuration across file type and product line
boundaries,” in Proceedings 14th International Conference on Software
Product Lines (SPLC’10), Jeju Island, South Korea, 2010, pp. 181-195.
Stefan Stanciulescu, D. Rabiser, and C. Seidl, “A technology-neutral
role-based collaboration model for software ecosystems,” in Proceedings
7th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2016); Track on Variability
modelling for scalable software evolution, Corfu, Greece, 2016.

L. Montalvillo and O. Diaz, “Tuning GitHub for SPL development:
Branching models & repository operations for product engineers,” in
Proceedings of the 19th International Conference on Software Product
Line, ser. SPLC "15. New York, NY, USA: ACM, 2015, pp. 111-120.
F. Schwigerl, T. Buchmann, and B. Westfechtel, “Supermod — A model-
driven tool that combines version control and software product line
engineering,” in Proceedings of the 10th International Conference on
Software Paradigm Trends, 2015, pp. 5-18.

F. Schwigerl, T. Buchmann, S. Uhrig, and B. Westfechtel, “Towards
the integration of model-driven engineering, software product line engi-
neering, and software configuration management,” in 3rd International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), 2015, pp. 1-14.

C. Haubeck, A. Chakraborty, J. Ladiges, A. Fay, A. Pokahr, and
W. Lamersdorf, “Evolution of cyber-physical production systems sup-
ported by community-enabled experiences,” in Proceedings 15th IEEE
International Conference on Industrial Informatics (INDIN 2017), Em-
den, Germany, 2017, pp. 867-874.

F. Angerer, H. Prihofer, D. Lettner, A. Grimmer, and P. Griinbacher,
“Identifying inactive code in product lines with configuration-aware
system dependence graphs,” in Proceedings 18th International Software
Product Line Conference, 2014.

A. Grimmer, F. Angerer, H. Prihofer, and P. Griinbacher, “Support-
ing program analysis for non-mainstream languages: Experiences and
lessons learned,” in 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), vol. 1, March
2016, pp. 460-469.

